統(tǒng)籌方法是一種安排工作進(jìn)程的數(shù)學(xué)方法。統(tǒng)籌全局的關(guān)鍵問題,便是在于各個(gè)步驟如何安排,而分清哪些步驟能夠并列進(jìn)行,哪些步驟有先后次序,便能夠合理統(tǒng)籌各項(xiàng)工作流程,能夠節(jié)省時(shí)間,提高工作效率。統(tǒng)籌問題在日常生活、工作中比較常見,也是行測考試的一種重要題型。解這類題型的關(guān)鍵是題型的識別,這里題型一般會這樣問:求最少需要多少錢、求最多需要多少時(shí)間、最短走多少路程等等。
例1、某商場舉行周年讓利活動,單件商品滿300返180元,滿200返100元,滿100返40元,如果不參加返現(xiàn)金的活動,則商品可以打5.5折。小王買了價(jià)值360元、220元、150元的商品各一件,問最少需要多少錢?( )
A、360元 B、382.5元 C、401.5元 D、410元
解析:首先題型識別,問最少需要多少錢,即如何統(tǒng)籌至所花錢最省。商場有兩種優(yōu)惠方式:返還現(xiàn)金和打折。
(1)價(jià)值360元的商品如果返還現(xiàn)金需要180元,如果打5.5折需要花費(fèi)198元,顯然用返還現(xiàn)金的方式比較節(jié)省。
(2)價(jià)值220元的商品如果返還現(xiàn)金需120元,打5.5折需220*0.55=121>220-100=120,返還現(xiàn)金更好;
(3)價(jià)值150元的商品如果返還現(xiàn)金需110元,打5.5折需150*0.55=82.5元,打折更好;所以最少需要180+120+82.5=382.5元。選B 。
小結(jié):這道題中的折數(shù)是5.5,可以通過錯(cuò)位相加的方法快速口算,如何在雖短的時(shí)間里運(yùn)用快速口算或估算做出正確的安排則是這道題的關(guān)鍵。
例2、某公司要買100本便簽紙和100支膠棒,附近有兩家超市。A超市的便簽紙0.8元一本,膠棒2元一支且買2送1。B超市的便簽紙1元一本且買3送1,膠棒1.5元一支。如果公司采購員要在這兩家超市買這些物品,則他至少要花多少元錢?( )
A、208.5 B、183.5 C、225 D、230
解析:不難看出,該題和上題有相似之處,屬于統(tǒng)籌問題。先分析題目中的數(shù)量關(guān)系,需要買兩種商品,可以在兩個(gè)超市買當(dāng)然應(yīng)該是那個(gè)超市便宜就在那個(gè)超市買了。經(jīng)過對比,要買便簽本的數(shù)量是4的倍數(shù)一定是在B超市核算,要買膠棒的數(shù)量是3的倍數(shù)一定在A超市比較便宜。因此從B超市買100(買75本送25本)本便簽紙,花費(fèi)75元;再在A超市買99支膠棒(買66支送33支)共需132元,再在B超市買1支膠棒。總價(jià)格為:75+132+1.5=208.5,答案選A。